enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission

    Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay. Nuclear fission was discovered by chemists Otto Hahn and Fritz Strassmann and physicists Lise ...

  3. Burnup - Wikipedia

    en.wikipedia.org/wiki/Burnup

    In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per initial metal atom) [1] or %FIFA (fissions per initial fissile atom) [2] as well as, preferably, the actual energy released per mass of initial fuel in ...

  4. Fission product yield - Wikipedia

    en.wikipedia.org/wiki/Fission_product_yield

    Yield is usually stated as percentage per fission, so that the total yield percentages sum to 200%. Less often, it is stated as percentage of all fission products, so that the percentages sum to 100%. Ternary fission, about 0.2–0.4% of fissions, also produces a third light nucleus such as helium-4 (90%) or tritium (7%).

  5. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    Samarium-149 is the second most important neutron poison in nuclear reactor physics. Samarium-151, produced at lower yields, is the third most abundant medium-lived fission product but emits only weak beta radiation. Both have high neutron absorption cross sections, so that much of them produced in a reactor are later destroyed there by neutron ...

  6. Nuclear chain reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chain_reaction

    A possible nuclear fission chain reaction: 1) A uranium-235 atom absorbs a neutron and fissions into two fission fragments, releasing three new neutrons and a large amount of binding energy. 2) One of those neutrons is absorbed by an atom of uranium-238, and does not continue the reaction. Another neutron leaves the system without being absorbed.

  7. Nuclear fission product - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission_product

    Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release of heat energy (kinetic energy of the nuclei), and gamma rays. The two smaller nuclei are the fission ...

  8. Nuclear reactor physics - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reactor_physics

    Nuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a controlled rate of fission in a nuclear reactor for the production of energy. [1] Most nuclear reactors use a chain reaction to induce a controlled rate of nuclear fission in fissile material ...

  9. Nuclear fuel - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fuel

    According to the International Nuclear Safety Center [22] the thermal conductivity of uranium dioxide can be predicted under different conditions by a series of equations. The bulk density of the fuel can be related to the thermal conductivity. Where ρ is the bulk density of the fuel and ρ td is the theoretical density of the uranium dioxide.