Search results
Results from the WOW.Com Content Network
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name "wave function", and gives rise to wave–particle duality.
The Dirac equation is a relativistic wave equation detailing electromagnetic interactions. Dirac waves accounted for the fine details of the hydrogen spectrum in a completely rigorous way. The wave equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed.
A one-way wave equation is a first-order partial differential equation describing one wave traveling in a direction defined by the vector wave velocity. It contrasts with the second-order two-way wave equation describing a standing wavefield resulting from superposition of two waves in opposite directions (using the squared scalar wave velocity).
Wave mechanics may refer to: the mechanics of waves; the application of the quantum wave equation, especially in position and momentum spaces; the resonant interaction of three or more waves, which includes the "three-wave equation"
Beyond the equations of motion, other aspects of matter wave optics differ from the corresponding light optics cases. Sensitivity of matter waves to environmental condition. Many examples of electromagnetic (light) diffraction occur in air under many environmental conditions.
After the wave breaks, it becomes a wave of translation and erosion of the ocean bottom intensifies. Cnoidal waves are exact periodic solutions to the Korteweg–de Vries equation in shallow water, that is, when the wavelength of the wave is much greater than the depth of the water.