Search results
Results from the WOW.Com Content Network
The time rate of temperature change at x is proportional to the heat flowing into an infinitesimal volume element, where the constant of proportionality is dependent on a constant κ (,) = (,) Putting these equations together gives the general equation of heat flow:
For example, the expression for the heat capacity at constant pressure is: = which is the partial derivative of the enthalpy with respect to temperature while holding pressure constant. We may write this equation as:
No change in internal energy (as the temperature of the system is constant throughout the process) leads to only work done by the total supplied heat, and thus an infinite amount of heat is required to increase the temperature of the system by a unit temperature, leading to infinite or undefined heat capacity of the system.
Entropy cannot be measured directly. The change in entropy with respect to pressure at a constant temperature is the same as the negative change in specific volume with respect to temperature at a constant pressure, for a simple compressible system. Maxwell relations in thermodynamics are often used to derive thermodynamic relations. [2]
The above derivation uses the first and second laws of thermodynamics. The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system.
A current student text on chemistry defines heat thus: "heat is the exchange of thermal energy between a system and its surroundings caused by a temperature difference." The author then explains how heat is defined or measured by calorimetry, in terms of heat capacity, specific heat capacity, molar heat capacity, and temperature. [42]
However, it is common to say ‘heat flow’ to mean ‘heat content’. [1] The equation of heat flow is given by Fourier's law of heat conduction. Rate of heat flow = - (heat transfer coefficient) * (area of the body) * (variation of the temperature) / (length of the material) The formula for the rate of heat flow is:
For example, if the change is an increase in temperature at constant volume, with no phase change and no chemical change, then the temperature of the body rises and its pressure increases. The quantity of heat transferred, ΔQ, divided by the observed temperature change, ΔT, is the body's heat capacity at constant volume: