Search results
Results from the WOW.Com Content Network
Stoma in a tomato leaf shown via colorized scanning electron microscope image A stoma in horizontal cross section The underside of a leaf. In this species (Tradescantia zebrina) the guard cells of the stomata are green because they contain chlorophyll while the epidermal cells are chlorophyll-free and contain red pigments.
The leaf and stem epidermis is covered with pores called stomata (sing; stoma), part of a stoma complex consisting of a pore surrounded on each side by chloroplast-containing guard cells, and two to four subsidiary cells that lack chloroplasts. The stomata complex regulates the exchange of gases and water vapor between the outside air and the ...
Guard cells are cells surrounding each stoma. They help to regulate the rate of transpiration by opening and closing the stomata. Light is the main trigger for the opening or closing. Each guard cell has a relatively thick and thinner cuticle on the pore-side and a thin one opposite it.
The most important benefit of CAM to the plant is the ability to leave most leaf stomata closed during the day. [9] Plants employing CAM are most common in arid environments, where water is scarce. Being able to keep stomata closed during the hottest and driest part of the day reduces the loss of water through evapotranspiration , allowing such ...
Leaf anatomy in most C 4 plants. A: Mesophyll cell B: Chloroplast C: Vascular tissue D: Bundle sheath cell E: Stoma F: Vascular tissue 1. CO 2 is fixed to produce a four-carbon molecule (malate or aspartate). 2. The molecule exits the cell and enters the bundle sheath cells. 3. It is then broken down into CO 2 and pyruvate.
Stomatal conductance, usually measured in mmol m −2 s −1 by a porometer, estimates the rate of gas exchange (i.e., carbon dioxide uptake) and transpiration (i.e., water loss as water vapor) through the leaf stomata as determined by the degree of stomatal aperture (and therefore the physical resistances to the movement of gases between the air and the interior of the leaf).
Number of stomata: More stomata will provide more pores for transpiration. Size of the leaf: A leaf with a bigger surface area will transpire faster than a leaf with a smaller surface area. Presence of plant cuticle: A waxy cuticle is relatively impermeable to water and water vapor and reduces evaporation from the plant surface except via the ...
The pores or stomata of the epidermis open into substomatal chambers, which are connected to the intercellular air spaces between the spongy and palisade mesophyll cell, so that oxygen, carbon dioxide and water vapor can diffuse into and out of the leaf and access the mesophyll cells during respiration, photosynthesis and transpiration.