Search results
Results from the WOW.Com Content Network
In special relativity, a four-vector (or 4-vector, sometimes Lorentz vector) [1] is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group ...
The Christoffel symbols find frequent use in Einstein's theory of general relativity, where spacetime is represented by a curved 4-dimensional Lorentz manifold with a Levi-Civita connection. The Einstein field equations – which determine the geometry of spacetime in the presence of matter – contain the Ricci tensor. Since the Ricci tensor ...
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...
In theories in which spacetime can have more than D = 4 dimensions, the generalized Lorentz groups O(D − 1; 1) of the appropriate dimension take the place of O(3; 1). [nb 8] The requirement of Lorentz invariance takes on perhaps its most dramatic effect in string theory.
In special and general relativity, the four-current (technically the four-current density) [1] is the four-dimensional analogue of the current density, with units of charge per unit time per unit area. Also known as vector current, it is used in the geometric context of four-dimensional spacetime, rather than separating time from three ...
Spacetime mathematically viewed as R 4 endowed with this bilinear form is known as Minkowski space M. The Lorentz transformation is thus an element of the group O(1, 3), the Lorentz group or, for those that prefer the other metric signature, O(3, 1) (also called the Lorentz group). [nb 3] One has:
To give some context for the general reader, the naive expectation for asymptotically flat spacetime symmetries, i.e., symmetries of spacetime seen by observers located far away from all sources of the gravitational field, would be to extend and reproduce the symmetries of flat spacetime of special relativity, viz., the Poincaré group, also called the inhomogeneous Lorentz group, [2] which is ...
The velocity, in contrast, is the rate of change of the position in (three-dimensional) space of the object, as seen by an observer, with respect to the observer's time. The value of the magnitude of an object's four-velocity, i.e. the quantity obtained by applying the metric tensor g to the four-velocity U , that is ‖ U ‖ 2 = U ⋅ U = g ...