Search results
Results from the WOW.Com Content Network
Timsort is a stable sorting algorithm (order of elements with same key is kept) and strives to perform balanced merges (a merge thus merges runs of similar sizes). In order to achieve sorting stability, only consecutive runs are merged. Between two non-consecutive runs, there can be an element with the same key inside the runs.
The difference between pigeonhole sort and counting sort is that in counting sort, the auxiliary array does not contain lists of input elements, only counts: 3: 1; 4: 0; 5: 2; 6: 0; 7: 0; 8: 1; For arrays where N is much larger than n, bucket sort is a generalization that is more efficient in space and time.
Shuffling can also be implemented by a sorting algorithm, namely by a random sort: assigning a random number to each element of the list and then sorting based on the random numbers. This is generally not done in practice, however, and there is a well-known simple and efficient algorithm for shuffling: the Fisher–Yates shuffle .
The pattern of repeated sorting passes with decreasing gaps is similar to Shellsort, but in Shellsort the array is sorted completely each pass before going on to the next-smallest gap. Comb sort's passes do not completely sort the elements. This is the reason that Shellsort gap sequences have a larger optimal shrink factor of about 2.25.
The simplest form goes through the whole list each time: procedure cocktailShakerSort(A : list of sortable items) is do swapped := false for each i in 0 to length(A) − 1 do: if A[i] > A[i + 1] then // test whether the two elements are in the wrong order swap(A[i], A[i + 1]) // let the two elements change places swapped := true end if end for if not swapped then // we can exit the outer loop ...
In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numbers, rational numbers, or text strings. [1]
Spaghetti sort is a linear-time, analog algorithm for sorting a sequence of items, introduced by A. K. Dewdney in his Scientific American column. [ 1 ] [ 2 ] [ 3 ] This algorithm sorts a sequence of items requiring O ( n ) stack space in a stable manner.
The following Python implementation [1] [circular reference] performs cycle sort on an array, counting the number of writes to that array that were needed to sort it. Python def cycle_sort ( array ) -> int : """Sort an array in place and return the number of writes.""" writes = 0 # Loop through the array to find cycles to rotate.