Search results
Results from the WOW.Com Content Network
A battery charger, recharger, or simply charger, [1] [2] is a device that stores energy in an electric battery by running current through it. The charging protocol—how much voltage and current, for how long and what to do when charging is complete—depends on the size and type of the battery being charged.
A typical 12 V, 40 Ah lead-acid car battery. An automotive battery, or car battery, is a rechargeable battery that is used to start a motor vehicle.. Its main purpose is to provide an electric current to the electric-powered starting motor, which in turn starts the chemically-powered internal combustion engine that actually propels the vehicle.
DieHard is an American brand of automotive battery and parts owned by Advance Auto Parts and sold exclusively at Advance, Carquest and Sears stores. Advance bought the DieHard brand from Sears in December 2019. [1] The brand dates to 1967, having been developed by Globe-Union Battery for Sears.
The actual voltage, matching the car battery's voltage, will be approximately 12.5 volts when dormant (less in cold conditions), approximately 14.5 volts when the engine and the alternator/generator are operating (more when cold), and may briefly drop as low as 5–6 volts during engine start due to the high temporary battery current usage. [12]
Conventional battery chargers use a one-, two-, or three-stage process to recharge the battery, with a switched-mode power supply including more stages in order to fill the battery more rapidly and completely. Common to almost all chargers, including non-switched models, is the middle stage, normally known as "absorption".
Thomas Edison patented a nickel– or cobalt–cadmium battery in 1902, [3] and adapted the battery design when he introduced the nickel–iron battery to the US two years after Jungner had built one. In 1906, Jungner established a factory close to Oskarshamn, Sweden, to produce flooded design Ni–Cd batteries.
In this case the battery voltage might rise to a value near that of the charger voltage; this causes the charging current to decrease significantly. After a few hours this interface charge will spread to the volume of the electrode and electrolyte; this leads to an interface charge so low that it may be insufficient to start the car. [ 29 ]
Non-contact charging utilizes magnetic resonance to transfer energy in the air between the charger and battery. This achieves a highly efficient energy transformation. [7] As the non-contact charger could keeping charging the vehicle, it allows EVs to have a smaller battery. By itself, it is more economical, safer and more sustainably developed.