Search results
Results from the WOW.Com Content Network
A coordinate system conversion is a conversion from one coordinate system to another, with both coordinate systems based on the same geodetic datum. Common conversion tasks include conversion between geodetic and earth-centered, earth-fixed coordinates and conversion from one type of map projection to another.
The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude , it is a horizontal position representation , which means it ignores altitude and treats the earth surface as a perfect ellipsoid .
Other than just a synonym for the ellipsoidal transverse Mercator map projection, the term Gauss–Krüger may be used in other slightly different ways: Sometimes, the term is used for a particular computational method for transverse Mercator: that is, how to convert between latitude/longitude and projected coordinates.
The third step consists of the application of a rotation matrix, multiplication with the scale factor = + (with a value near 1) and the addition of the three translations, c x, c y, c z. The coordinates of a reference system B are derived from reference system A by the following formula (position vector transformation convention and very small ...
The Lambert projection is relatively easy to use: conversions from geodetic (latitude/longitude) to State Plane Grid coordinates involve trigonometric equations that are fairly straightforward and which can be solved on most scientific calculators, especially programmable models. [9]
UTM is one such system, dividing the Earth into 60 longitude zones (and with UPS covering the Polar regions). UTM is widely used, and the coordinates approximately corresponds to meters north and east. However, as a set of map-projections it has inherent distortions, and thus most calculations based on UTM will not be exact. The crossing of ...
As with the Mercator projection, the region near the tangent (or secant) point on a Stereographic map remains very close to true scale for an angular distance of a few degrees. In the ellipsoidal model, a stereographic projection tangent to the pole has a scale factor of less than 1.003 at 84° latitude and 1.008 at 80° latitude.
The Universal Transverse Mercator coordinate system consists of 60 zones, each of which is defined by a unique point of origin, false easting, and Transverse Mercator projection centered over a specific central meridian with a scale factor of 0.9996 The UTM coordinate system (which is the subject of this article) is a system by which locations ...