Search results
Results from the WOW.Com Content Network
In statistics, (between-) study heterogeneity is a phenomenon that commonly occurs when attempting to undertake a meta-analysis. In a simplistic scenario, studies whose results are to be combined in the meta-analysis would all be undertaken in the same way and to the same experimental protocols.
They relate to the validity of the often convenient assumption that the statistical properties of any one part of an overall dataset are the same as any other part. In meta-analysis, which combines the data from several studies, homogeneity measures the differences or similarities between the several studies (see also Study heterogeneity).
Meta-analysis leads to a shift of emphasis from single studies to multiple studies. It emphasizes the practical importance of the effect size instead of the statistical significance of individual studies. This shift in thinking has been termed "meta-analytic thinking". The results of a meta-analysis are often shown in a forest plot.
For example, if both p-values are around 0.10, or if one is around 0.04 and one is around 0.25, the meta-analysis p-value is around 0.05. In statistics , Fisher's method , [ 1 ] [ 2 ] also known as Fisher's combined probability test , is a technique for data fusion or " meta-analysis " (analysis of analyses).
Examples of such works are scientific reviews and meta-analyses. These and related practices face various challenges and are a subject of metascience. Various issues with included or available studies such as, for example, heterogeneity of methods used may lead to faulty conclusions of the meta-analysis. [115]
Funnel plots, introduced by Light and Pillemer in 1984 [1] and discussed in detail by Matthias Egger and colleagues, [2] [3] are useful adjuncts to meta-analyses. A funnel plot is a scatterplot of treatment effect against a measure of study precision. It is used primarily as a visual aid for detecting bias or systematic heterogeneity.
A meta-regression can be classified in the same way—meta-regression and network meta-regression—depending on the number of distinct treatments in the regression analysis. Meta-analysis (and meta-regression) is often placed at the top of the evidence hierarchy provided that the analysis consists of individual participant data of randomized ...
The area of each square is proportional to the study's weight in the meta-analysis. The overall meta-analysed measure of effect is often represented on the plot as a dashed vertical line. This meta-analysed measure of effect is commonly plotted as a diamond, the lateral points of which indicate confidence intervals for this estimate.