Search results
Results from the WOW.Com Content Network
Reproduction of an early electron microscope constructed by Ernst Ruska in the 1930s. Many developments laid the groundwork of the electron optics used in microscopes. [2] One significant step was the work of Hertz in 1883 [3] who made a cathode-ray tube with electrostatic and magnetic deflection, demonstrating manipulation of the direction of an electron beam.
An account of the early history of scanning electron microscopy has been presented by McMullan. [2] [3] Although Max Knoll produced a photo with a 50 mm object-field-width showing channeling contrast by the use of an electron beam scanner, [4] it was Manfred von Ardenne who in 1937 invented [5] a microscope with high resolution by scanning a very small raster with a demagnified and finely ...
Electron gun from an oscilloscope CRT Setup of an electron gun. 1. Hot cathode.2. Wehnelt cylinder.3. Anode. A direct current, electrostatic thermionic electron gun is formed from several parts: a hot cathode, which is heated to create a stream of electrons via thermionic emission; electrodes generating an electric field to focus the electron beam (such as a Wehnelt cylinder); and one or more ...
A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused ...
It is named after its designers, Thomas E. Everhart and Richard F. M. Thornley, who in 1960 published their design to increase the efficiency of existing secondary electron detectors by adding a light pipe to carry the photon signal from the scintillator inside the evacuated specimen chamber of the SEM to the photomultiplier outside the chamber.
Electron crystallography is a subset of methods in electron diffraction focusing upon detailed determination of the positions of atoms in solids using a transmission electron microscope (TEM). It can involve the use of high-resolution transmission electron microscopy images, electron diffraction patterns including convergent-beam electron ...
Electron optics calculations are crucial for the design of electron microscopes and particle accelerators. In the paraxial approximation, trajectory calculations can be carried out using ray transfer matrix analysis. An einzel lens, a specific type of electrostatic lens. This figure shows the electron path.
After World War II, Ruska resumed work at Siemens, where he continued to develop the electron microscope, producing the first microscope with 100k magnification. [12] The fundamental structure of this microscope design, with multi-stage beam preparation optics, is still used in modern microscopes.