enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    An increase in energy level from E 1 to E 2 resulting from absorption of a photon represented by the red squiggly arrow, and whose energy is h ν. A decrease in energy level from E 2 to E 1 resulting in emission of a photon represented by the red squiggly arrow, and whose energy is h ν.

  3. Electron shell - Wikipedia

    en.wikipedia.org/wiki/Electron_shell

    In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.

  4. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    The energy associated to an electron is that of its orbital. The energy of a configuration is often approximated as the sum of the energy of each electron, neglecting the electron-electron interactions. The configuration that corresponds to the lowest electronic energy is called the ground state. Any other configuration is an excited state.

  5. Principal quantum number - Wikipedia

    en.wikipedia.org/wiki/Principal_quantum_number

    Description of energy levels based on n alone gradually becomes inadequate for atomic numbers starting from 5 and fails completely on potassium (Z = 19) and afterwards. The principal quantum number was first created for use in the semiclassical Bohr model of the atom, distinguishing between

  6. Electron configurations of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_configurations_of...

    For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell. For phosphorus (element 15) as an example, the concise form is [Ne] 3s 2 3p 3.

  7. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    Four quantum numbers can describe an electron energy level in a hydrogen-like atom completely: Principal quantum number (n) Azimuthal quantum number (ℓ) Magnetic quantum number (m ℓ) Spin quantum number (m s) These quantum numbers are also used in the classical description of nuclear particle states (e.g. protons and neutrons).

  8. Atom - Wikipedia

    en.wikipedia.org/wiki/Atom

    An energy level can be measured by the amount of energy needed to unbind the electron from the atom, and is usually given in units of electronvolts (eV). The lowest energy state of a bound electron is called the ground state, i.e., stationary state , while an electron transition to a higher level results in an excited state. [ 88 ]

  9. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    If the electron receives energy that is less than or greater than this value, it cannot jump from state 1 to state 2. Now, suppose we irradiate the atom with a broad-spectrum of light. Photons that reach the atom that have an energy of exactly E 2 − E 1 will be absorbed by the electron in state 1, and that electron will jump to state 2 ...