Search results
Results from the WOW.Com Content Network
The thermosphere (or the upper atmosphere) is the height region above 85 kilometres (53 mi), while the region between the tropopause and the mesopause is the middle atmosphere (stratosphere and mesosphere) where absorption of solar UV radiation generates the temperature maximum near an altitude of 45 kilometres (28 mi) and causes the ozone layer.
2 (θ), with θ the co-latitude, etc. [9] Within the thermosphere, mode (1, −2) is the predominant mode reaching diurnal temperature amplitudes at the exosphere of at least 140 K and horizontal winds of the order of 100 m/s and more increasing with geomagnetic activity. [11]
The temperature of the thermopause could range from nearly absolute zero to 987.547 °C (1,810 °F). Below this, the atmosphere is defined to be active [ clarification needed ] on the insolation received, due to the increased presence of heavier gases such as monatomic oxygen.
Relationship of the atmosphere and ionosphere. The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere.
The high temperatures prevalent in the thermosphere (800–1000 K) have not been explained yet; [19] existing models predict a temperature no higher than about 400 K. [16] They may be caused by absorption of high-energy solar radiation (UV or X-ray), by heating from the charged particles precipitating from the Jovian magnetosphere, or by ...
This decrease in temperature can be attributed to the diminishing radiation received from the Sun, after most of it has already been absorbed by the thermosphere. [ 3 ] The fourth layer of the atmosphere is known as the thermosphere, and extends from the mesopause to the 'top' of the collisional atmosphere.
The named layers of the atmosphere apply only to the measured temperature profile, because their definition relies on the presence of inversions. A multi-layered model of a greenhouse atmosphere will produce predicted temperatures for the atmosphere that decrease with height, asymptotically approaching the skin temperature at high altitudes. [3]
Temperature determines the statistical occupation of the microstates of the ensemble. The microscopic definition of temperature is only meaningful in the thermodynamic limit, meaning for large ensembles of states or particles, to fulfill the requirements of the statistical model. Kinetic energy is also considered as a component of thermal energy.