Search results
Results from the WOW.Com Content Network
The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...
The newton (symbol: N) is the unit of force in the International System of Units (SI). Expressed in terms of SI base units, it is 1 kg⋅m/s 2, the force that accelerates a mass of one kilogram at one metre per second squared. The unit is named after Isaac Newton in recognition of his work on classical mechanics, specifically his second law of ...
imaginary unit: unitless electric current: ampere (A) ^ Cartesian x-axis basis unit vector unitless current density: ampere per square meter (A/m 2) impulse: kilogram meter per second (kg⋅m/s) jerk: meter per second cubed (m/s 3)
Relation to SI units spat: ≡ 4π sr [16] – The solid angle subtended by a sphere at its centre. ≈ 12.566 37 sr: square degree: deg 2; sq.deg.; (°) 2: ≡ (π ⁄ 180) 2 sr: ≈ 0.304 62 × 10 −3 sr: steradian (SI unit) sr The solid angle subtended at the center of a sphere of radius r by a portion of the sphere having an area r 2. A ...
An equivalent definition of the dyne is "that force which, acting for one second, will produce a change of velocity of one centimetre per second in a mass of one gram". [3] One dyne is equal to 10 micronewtons, 10 −5 N or to 10 nsn (nanosthenes) in the old metre–tonne–second system of units. 1 dyn = 1 g⋅cm/s 2 = 10 −5 kg⋅m/s 2 = 10 ...
Volume per unit mass (reciprocal of density) m 3 ⋅kg −1: L 3 M −1: intensive Spin: S: Quantum-mechanically defined angular momentum of a particle kg⋅m 2 ⋅s −1: L 2 M T −1: Strain: ε: Extension per unit length unitless 1: Stress: σ: Force per unit oriented surface area Pa L −1 M T −2: order 2 tensor Surface tension: γ ...
The SI system after 1983, but before the 2019 revision: Dependence of base unit definitions on other base units (for example, the metre is defined as the distance travelled by light in a specific fraction of a second), with the constants of nature and artefacts used to define them (such as the mass of the IPK for the kilogram).
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...