Search results
Results from the WOW.Com Content Network
The following formula approximates the Earth's gravity variation with altitude: = (+) where g h is the gravitational acceleration at height h above sea level. R e is the Earth's mean radius. g 0 is the standard gravitational acceleration.
When density and gravity are approximately constant (that is, for relatively small changes in height), simply multiplying height difference, gravity, and density will yield a good approximation of pressure difference. If the pressure at one point in a liquid with uniform density ρ is known to be P 0, then the pressure at another point is P 1:
Before Newton's law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature. [6]
The type of gravity model used for the Earth depends upon the degree of fidelity required for a given problem. For many problems such as aircraft simulation, it may be sufficient to consider gravity to be a constant, defined as: [2] = = 9.80665 m/s 2 (32.1740 ft/s 2)
Gravity is usually measured in units of acceleration.In the SI system of units, the standard unit of acceleration is metres per second squared (m/s 2).Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2.
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
where ρ 2 = ρ(x, y, z) is the mass density at the volume element and of the direction from the volume element to point mass 1. is the gravitational potential energy per unit mass. Earth's gravity field can be derived from a gravity potential (geopotential) field as follows:
Isostasy (Greek ísos 'equal', stásis 'standstill') or isostatic equilibrium is the state of gravitational equilibrium between Earth's crust (or lithosphere) and mantle such that the crust "floats" at an elevation that depends on its thickness and density. This concept is invoked to explain how different topographic heights can exist at Earth ...