enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The following formula approximates the Earth's gravity variation with altitude: = (+) where g h is the gravitational acceleration at height h above sea level. R e is the Earth's mean radius. g 0 is the standard gravitational acceleration.

  3. Vertical pressure variation - Wikipedia

    en.wikipedia.org/wiki/Vertical_pressure_variation

    When density and gravity are approximately constant (that is, for relatively small changes in height), simply multiplying height difference, gravity, and density will yield a good approximation of pressure difference. If the pressure at one point in a liquid with uniform density ρ is known to be P 0, then the pressure at another point is P 1:

  4. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Before Newton's law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature. [6]

  5. Theoretical gravity - Wikipedia

    en.wikipedia.org/wiki/Theoretical_gravity

    The type of gravity model used for the Earth depends upon the degree of fidelity required for a given problem. For many problems such as aircraft simulation, it may be sufficient to consider gravity to be a constant, defined as: [2] = = 9.80665 m/s 2 (32.1740 ft/s 2)

  6. Gravimetry - Wikipedia

    en.wikipedia.org/wiki/Gravimetry

    Gravity is usually measured in units of acceleration.In the SI system of units, the standard unit of acceleration is metres per second squared (m/s 2).Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2.

  7. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  8. Geopotential - Wikipedia

    en.wikipedia.org/wiki/Geopotential

    where ρ 2 = ρ(x, y, z) is the mass density at the volume element and of the direction from the volume element to point mass 1. is the gravitational potential energy per unit mass. Earth's gravity field can be derived from a gravity potential (geopotential) field as follows:

  9. Isostasy - Wikipedia

    en.wikipedia.org/wiki/Isostasy

    Isostasy (Greek ísos 'equal', stásis 'standstill') or isostatic equilibrium is the state of gravitational equilibrium between Earth's crust (or lithosphere) and mantle such that the crust "floats" at an elevation that depends on its thickness and density. This concept is invoked to explain how different topographic heights can exist at Earth ...