enow.com Web Search

  1. Ad

    related to: how to solve complex numbers with exponents step by step problems practice

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    In fact, the same proof shows that Euler's formula is even valid for all complex numbers x. A point in the complex plane can be represented by a complex number written in cartesian coordinates. Euler's formula provides a means of conversion between cartesian coordinates and polar coordinates. The polar form simplifies the mathematics when used ...

  3. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation =; every complex number can be expressed in the form +, where a and b are real numbers.

  4. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The binary number system expresses any number as a sum of powers of 2, and denotes it as a sequence of 0 and 1, separated by a binary point, where 1 indicates a power of 2 that appears in the sum; the exponent is determined by the place of this 1: the nonnegative exponents are the rank of the 1 on the left of the point (starting from 0), and ...

  5. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    The multiplication of two odd numbers is always odd, but the multiplication of an even number with any number is always even. An odd number raised to a power is always odd and an even number raised to power is always even, so for example x n has the same parity as x. Consider any primitive solution (x, y, z) to the equation x n + y n = z n.

  6. Six exponentials theorem - Wikipedia

    en.wikipedia.org/wiki/Six_exponentials_theorem

    The strong six exponentials theorem then says that if x 1, x 2, and x 3 are complex numbers that are linearly independent over the algebraic numbers, and if y 1 and y 2 are a pair of complex numbers that are also linearly independent over the algebraic numbers then at least one of the six numbers x i y j for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2 is ...

  7. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!

  8. Lifting-the-exponent lemma - Wikipedia

    en.wikipedia.org/wiki/Lifting-the-exponent_lemma

    In elementary number theory, the lifting-the-exponent lemma (LTE lemma) provides several formulas for computing the p-adic valuation of special forms of integers. The lemma is named as such because it describes the steps necessary to "lift" the exponent of p {\displaystyle p} in such expressions.

  9. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    However, there are generalizations of this formula valid for other exponents. These can be used to give explicit expressions for the n th roots of unity, that is, complex numbers z such that z n = 1. Using the standard extensions of the sine and cosine functions to complex numbers, the formula is valid even when x is an arbitrary complex number.

  1. Ad

    related to: how to solve complex numbers with exponents step by step problems practice