enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  3. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.

  4. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of possible outcomes for an experiment. [1] [2] It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). [3]

  5. Solid Converter PDF - Wikipedia

    en.wikipedia.org/wiki/Solid_Converter_PDF

    Solid Converter PDF is document reconstruction software from Solid Documents which converts PDF files to editable formats. Originally released for the Microsoft Windows operating system, a Mac OS X version was released in 2010. The current versions are Solid Converter PDF 9.0 for Windows and Solid PDF to Word for Mac 2.1.

  6. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is [ 2 ] [ 3 ] f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 . {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2 ...

  7. Triangular distribution - Wikipedia

    en.wikipedia.org/wiki/Triangular_distribution

    This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]

  8. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    gives a probability that a statistic is between 0 (mean) and Z. Example: Prob(0 ≤ Z ≤ 0.69) = 0.2549. Cumulative gives a probability that a statistic is less than Z. This equates to the area of the distribution below Z. Example: Prob(Z ≤ 0.69) = 0.7549. Complementary cumulative gives a probability that a statistic is greater than Z.

  9. Divergence-from-randomness model - Wikipedia

    en.wikipedia.org/wiki/Divergence-from-randomness...

    The columns to the right show the observed and Poisson probabilities. P obs,elite(Kt) is the observed probability over all documents. P Poisson, all, lambda(Kt) is the Poisson probability, where lambda(t,c)=nL(t,c)/N D(c)=0.20 is the Poisson parameter. The table illustrates how the observed probability is different from the Poisson probability.