Search results
Results from the WOW.Com Content Network
The March equinox itself precesses slowly westward relative to the fixed stars, completing one revolution in about 25,800 years, so the misnamed "sidereal" day ("sidereal" is derived from the Latin sidus meaning "star") is 0.0084 seconds shorter than the stellar day, Earth's actual period of rotation relative to the fixed stars. [3]
The time for one complete rotation is 23 hours, 56 minutes, and 4.09 seconds – one sidereal day. The first experimental demonstration of this motion was conducted by Léon Foucault. Because Earth orbits the Sun once a year, the sidereal time at any given place and time will gain about four minutes against local civil time, every 24 hours ...
On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...
Angles in the hours ( h), minutes ( m), and seconds ( s) of time measure must be converted to decimal degrees or radians before calculations are performed. 1 h = 15°; 1 m = 15′; 1 s = 15″ Angles greater than 360° (2 π ) or less than 0° may need to be reduced to the range 0°−360° (0–2 π ) depending upon the particular calculating ...
Thus, the sidereal day is shorter than the stellar day by about 8.4 ms. [37] Both the stellar day and the sidereal day are shorter than the mean solar day by about 3 minutes 56 seconds. This is a result of the Earth turning 1 additional rotation, relative to the celestial reference frame, as it orbits the Sun (so 366.24 rotations/y).
27.321661 days [7] (equal to sidereal orbital period due to spin-orbit locking, a sidereal lunar month) 27 d 7 h 43 m 11.5 s 29.530588 days [ 7 ] (equal to synodic orbital period , due to spin-orbit locking, a synodic lunar month )
The average duration of the day-night cycle on Mars — i.e., a Martian day — is 24 hours, 39 minutes and 35.244 seconds, [3] equivalent to 1.02749125 Earth days. [4] The sidereal rotational period of Mars—its rotation compared to the fixed stars—is 24 hours, 37 minutes and 22.66 seconds. [4]
A sidereal day is about 4 minutes less than a solar day of 24 hours (23 hours 56 minutes and 4.09 seconds), or 0.99726968 of a solar day of 24 hours. [7] There are about 366.2422 stellar days in one mean tropical year (one stellar day more than the number of solar days). [8]