Search results
Results from the WOW.Com Content Network
Printable version; In other projects ... Linear algebra is the branch of mathematics concerning linear equations such as: ... Code of Conduct; Developers;
Linear block codes are frequently denoted as [n, k, d] codes, where d refers to the code's minimum Hamming distance between any two code words. (The [n, k, d] notation should not be confused with the (n, M, d) notation used to denote a non-linear code of length n, size M (i.e., having M code words), and minimum Hamming distance d.)
The Z-ordering can be used to efficiently build a quadtree (2D) or octree (3D) for a set of points. [5] [6] The basic idea is to sort the input set according to Z-order.Once sorted, the points can either be stored in a binary search tree and used directly, which is called a linear quadtree, [7] or they can be used to build a pointer based quadtree.
Download QR code; Print/export Download as PDF; Printable version; In other projects ... This is an outline of topics related to linear algebra, the branch of ...
aaa is a one- to three-letter code describing the actual algorithm implemented in the subroutine, e.g. SV denotes a subroutine to solve linear system, while R denotes a rank-1 update. For example, the subroutine to solve a linear system with a general (non-structured) matrix using real double-precision arithmetic is called DGESV . [ 2 ] : "
Type II codes are binary self-dual codes which are doubly even. Type III codes are ternary self-dual codes. Every codeword in a Type III code has Hamming weight divisible by 3. Type IV codes are self-dual codes over F 4. These are again even. Codes of types I, II, III, or IV exist only if the length n is a multiple of 2, 8, 4, or 2 respectively.
linear form A linear map from a vector space to its field of scalars [8] linear independence Property of being not linearly dependent. [9] linear map A function between vector space s which respects addition and scalar multiplication. linear transformation A linear map whose domain and codomain are equal; it is generally supposed to be invertible.
2. In geometry and linear algebra, denotes the cross product. 3. In set theory and category theory, denotes the Cartesian product and the direct product. See also × in § Set theory. · 1. Denotes multiplication and is read as times; for example, 3 ⋅ 2. 2. In geometry and linear algebra, denotes the dot product. 3.