Search results
Results from the WOW.Com Content Network
Values are given in terms of temperature necessary to reach the specified pressure. Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).
At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere, [1] 760 Torr, 101.325 kPa, or 14.69595 psi. For example, at any given temperature, methyl chloride has the highest vapor pressure of any of the liquids in the chart.
It is however easy to convert the parameters to different pressure and temperature units. For switching from degrees Celsius to kelvin it is sufficient to subtract 273.15 from the C parameter. For switching from millimeters of mercury to pascals it is sufficient to add the common logarithm of the factor between both units to the A parameter:
1 Nm 3 of any gas (measured at 0 °C and 1 atmosphere of absolute pressure) equals 37.326 scf of that gas (measured at 60 °F and 1 atmosphere of absolute pressure). 1 kmol of any ideal gas equals 22.414 Nm 3 of that gas at 0 °C and 1 atmosphere of absolute pressure ... and 1 lbmol of any ideal gas equals 379.482 scf of that gas at 60 °F and ...
The torr (symbol: Torr) is a unit of pressure based on an absolute scale, defined as exactly 1 / 760 of a standard atmosphere (101325 Pa). Thus one torr is exactly 101325 / 760 pascals (≈ 133.32 Pa).
Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.
Ethanol vapor pressure vs. temperature. ... Mass fraction, % Volume concentration, % Mass concentration, g/(100 ml) at 15.56 °C Density relative to 4 °C water
The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.