Search results
Results from the WOW.Com Content Network
In subtyping systems, the bottom type is a subtype of all types. [1] It is dual to the top type, which spans all possible values in a system. If a type system is sound, the bottom type is uninhabited and a term of bottom type represents a logical contradiction
The bottom type in type theory, which is the bottom element in the subtype relation. This may coincide with the empty type , which represents absurdum under the Curry–Howard correspondence The "undefined value" in quantum physics interpretations that reject counterfactual definiteness , as in ( r 0 ,⊥)
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
An infimum of a set is always and only defined relative to a superset of the set in question. For example, there is no infimum of the positive real numbers inside the positive real numbers (as their own superset), nor any infimum of the positive real numbers inside the complex numbers with positive real part.
For example: "All humans are mortal, and Socrates is a human. ∴ Socrates is mortal." ∵ Abbreviation of "because" or "since". Placed between two assertions, it means that the first one is implied by the second one. For example: "11 is prime ∵ it has no positive integer factors other than itself and one." ∋ 1. Abbreviation of "such that".
If, for some notion of substructure, objects are substructures of themselves (that is, the relationship is reflexive), then the qualification proper requires the objects to be different. For example, a proper subset of a set S is a subset of S that is different from S, and a proper divisor of a number n is a divisor of n that is different from n.
In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).
A term's definition may require additional properties that are not listed in this table. In mathematics, a relation on a set is called connected or complete or total if it relates (or "compares") all distinct pairs of elements of the set in one direction or the other while it is called strongly connected if it relates all pairs of elements.