enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bottom type - Wikipedia

    en.wikipedia.org/wiki/Bottom_type

    In subtyping systems, the bottom type is a subtype of all types. [1] It is dual to the top type, which spans all possible values in a system. If a type system is sound, the bottom type is uninhabited and a term of bottom type represents a logical contradiction

  3. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    For example, "is a blood relative of" is a symmetric relation, because x is a blood relative of y if and only if y is a blood relative of x. Antisymmetric for all x, y ∈ X, if xRy and yRx then x = y. For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [11] Asymmetric

  4. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    For example, quotient set, quotient group, quotient category, etc. 3. In number theory and field theory, / denotes a field extension, where F is an extension field of the field E. 4. In probability theory, denotes a conditional probability. For example, (/) denotes the probability of A, given that B occurs.

  5. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    An infimum of a set is always and only defined relative to a superset of the set in question. For example, there is no infimum of the positive real numbers inside the positive real numbers (as their own superset), nor any infimum of the positive real numbers inside the complex numbers with positive real part.

  6. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).

  7. Up tack - Wikipedia

    en.wikipedia.org/wiki/Up_tack

    The bottom type in type theory, which is the bottom element in the subtype relation. This may coincide with the empty type , which represents absurdum under the Curry–Howard correspondence The "undefined value" in quantum physics interpretations that reject counterfactual definiteness , as in ( r 0 ,⊥)

  8. Glossary of mathematical jargon - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    If, for some notion of substructure, objects are substructures of themselves (that is, the relationship is reflexive), then the qualification proper requires the objects to be different. For example, a proper subset of a set S is a subset of S that is different from S, and a proper divisor of a number n is a divisor of n that is different from n.

  9. Mathematical structure - Wikipedia

    en.wikipedia.org/wiki/Mathematical_structure

    In mathematics, a structure on a set (or on some sets) refers to providing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.