enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/GramSchmidt_process

    The GramSchmidt process can be stabilized by a small modification; this version is sometimes referred to as modified Gram-Schmidt or MGS. This approach gives the same result as the original formula in exact arithmetic and introduces smaller errors in finite-precision arithmetic.

  3. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:

  4. Orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_polynomials

    In other words, the sequence is obtained from the sequence of monomials 1, x, x 2, … by the GramSchmidt process with respect to this inner product. Usually the sequence is required to be orthonormal , namely, P n , P n = 1 , {\displaystyle \langle P_{n},P_{n}\rangle =1,} however, other normalisations are sometimes used.

  5. Schmidt decomposition - Wikipedia

    en.wikipedia.org/wiki/Schmidt_decomposition

    In linear algebra, the Schmidt decomposition (named after its originator Erhard Schmidt) refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory , for example in entanglement characterization and in state purification , and plasticity .

  6. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    An alternative way to arrive at the same expressions is to take the first three derivatives of the curve r′(t), r′′(t), r′′′(t), and to apply the Gram-Schmidt process. The resulting ordered orthonormal basis is precisely the TNB frame. This procedure also generalizes to produce Frenet frames in higher dimensions.

  7. Orthonormal basis - Wikipedia

    en.wikipedia.org/wiki/Orthonormal_basis

    Using Zorn's lemma and the GramSchmidt process (or more simply well-ordering and transfinite recursion), one can show that every Hilbert space admits an orthonormal basis; [7] furthermore, any two orthonormal bases of the same space have the same cardinality (this can be proven in a manner akin to that of the proof of the usual dimension ...

  8. Lenstra–Lenstra–Lovász lattice basis reduction algorithm

    en.wikipedia.org/wiki/Lenstra–Lenstra–Lovász...

    An early successful application of the LLL algorithm was its use by Andrew Odlyzko and Herman te Riele in disproving Mertens conjecture. [5]The LLL algorithm has found numerous other applications in MIMO detection algorithms [6] and cryptanalysis of public-key encryption schemes: knapsack cryptosystems, RSA with particular settings, NTRUEncrypt, and so forth.

  9. Iwasawa decomposition - Wikipedia

    en.wikipedia.org/wiki/Iwasawa_decomposition

    In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of GramSchmidt orthogonalization).