Search results
Results from the WOW.Com Content Network
The first two steps of the Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.
This method has greater numerical stability than the Gram–Schmidt method above. The following table gives the number of operations in the k-th step of the QR-decomposition by the Householder transformation, assuming a square matrix with size n.
A practical way to enforce this is by requiring that the next search direction be built out of the current residual and all previous search directions. The conjugation constraint is an orthonormal-type constraint and hence the algorithm can be viewed as an example of Gram-Schmidt orthonormalization. This gives the following expression:
Thus the problem of finding conjugate axes is less constrained than the problem of orthogonalization, so the Gram–Schmidt process works, with additional degrees of freedom that we can later use to pick the ones that would simplify the computation: Arbitrarily set .
An alternative way to arrive at the same expressions is to take the first three derivatives of the curve r′(t), r′′(t), r′′′(t), and to apply the Gram-Schmidt process. The resulting ordered orthonormal basis is precisely the TNB frame. This procedure also generalizes to produce Frenet frames in higher dimensions.
The Gram-Schmidt theorem, together with the axiom of choice, guarantees that every vector space admits an orthonormal basis. This is possibly the most significant use of orthonormality, as this fact permits operators on inner-product spaces to be discussed in terms of their action on the space's orthonormal basis vectors.
In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...
In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization).