Search results
Results from the WOW.Com Content Network
Frequency analysis [2] is the analysis of how often, or how frequently, an observed phenomenon occurs in a certain range. Frequency analysis applies to a record of length N of observed data X 1, X 2, X 3. . . X N on a variable phenomenon X. The record may be time-dependent (e.g. rainfall measured in one spot) or space-dependent (e.g. crop ...
The cumulative frequency is the total of the absolute frequencies of all events at or below a certain point in an ordered list of events. [ 1 ] : 17–19 The relative frequency (or empirical probability ) of an event is the absolute frequency normalized by the total number of events:
In descriptive statistics, the range of a set of data is size of the narrowest interval which contains all the data. It is calculated as the difference between the largest and smallest values (also known as the sample maximum and minimum). [1] It is expressed in the same units as the data. The range provides an indication of statistical ...
The Cauchy distribution, an example of a distribution which does not have an expected value or a variance. In physics it is usually called a Lorentzian profile , and is associated with many processes, including resonance energy distribution, impact and natural spectral line broadening and quadratic stark line broadening.
The link function is often related to the distribution of the response, and in particular it typically has the effect of transforming between the (,) range of the linear predictor and the range of the response variable. Some common examples of GLMs are: Poisson regression for count data.
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
Although both the sample mean and the sample median are unbiased estimators of the midpoint, neither is as efficient as the sample mid-range, i.e. the arithmetic mean of the sample maximum and the sample minimum, which is the UMVU estimator of the midpoint (and also the maximum likelihood estimate).
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.