enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mirifici Logarithmorum Canonis Descriptio - Wikipedia

    en.wikipedia.org/wiki/Mirifici_Logarithmorum...

    The logarithm in the table, however, is of that sine value divided by 10,000,000. [1]: p. 19 The logarithm is again presented as an integer with an implied denominator of 10,000,000. The table consists of 45 pairs of facing pages. Each pair is labeled at the top with an angle, from 0 to 44 degrees, and at the bottom from 90 to 45 degrees.

  3. Alexander John Thompson - Wikipedia

    en.wikipedia.org/wiki/Alexander_John_Thompson

    Alexander John Thompson (1885 in Plaistow, Essex – 17 June 1968 in Wallington, Surrey) is the author of the last great table of logarithms, published in 1952.This table, the Logarithmetica britannica gives the logarithms of all numbers from 1 to 100000 to 20 places and supersedes all previous tables of similar scope, in particular the tables of Henry Briggs, Adriaan Vlacq and Gaspard de Prony.

  4. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    Here we employ a method called "indirect expansion" to expand the given function. This method uses the known Taylor expansion of the exponential function. In order to expand (1 + x)e x as a Taylor series in x, we use the known Taylor series of function e x:

  5. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The logarithm of a product is the sum of the logarithms of the numbers being multiplied; the logarithm of the ratio of two numbers is the difference of the logarithms. The logarithm of the p-th power of a number is p times the logarithm of the number itself; the logarithm of a p-th root is the logarithm of the number divided by p. The following ...

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The logarithm of a complex number is thus a multi-valued function, because φ is multi-valued. Finally, the other exponential law ( e a ) k = e a k , {\displaystyle \left(e^{a}\right)^{k}=e^{ak},} which can be seen to hold for all integers k , together with Euler's formula, implies several trigonometric identities , as well as de Moivre's formula .

  7. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    The area of the blue region converges to Euler's constant. Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

  8. Nvidia and the stock market come roaring back after historic ...

    www.aol.com/nvidia-us-futures-show-signs...

    After plunging 17% on Monday, Nvidia climbed almost 9% as investors rushed in to buy this historic dip in shares of the top chip maker.

  9. p-adic exponential function - Wikipedia

    en.wikipedia.org/wiki/P-adic_exponential_function

    The roots of the Iwasawa logarithm log p (z) are exactly the elements of C p of the form p r ·ζ where r is a rational number and ζ is a root of unity. [4] Note that there is no analogue in C p of Euler's identity, e 2πi = 1. This is a corollary of Strassmann's theorem.