Search results
Results from the WOW.Com Content Network
Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in ...
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.
At any time after t = t′ = 0, xx′ is not zero, so dividing both sides of the equation by xx′ results in =, which is called the "Lorentz factor". When the transformation equations are required to satisfy the light signal equations in the form x = ct and x′ = ct′, by substituting the x and x'-values, the same technique produces the same ...
is called the Lorentz factor and c is the speed of light in free space. Lorentz factor (γ) is the same in both systems. The inverse transformations are the same except for the substitution v → −v. An equivalent, alternative expression is: [3]
Relation between the speed and the Lorentz factor γ (and hence the time dilation of moving clocks). Time dilation as predicted by special relativity is often verified by means of particle lifetime experiments. According to special relativity, the rate of a clock C traveling between two synchronized laboratory clocks A and B, as seen by a ...
The free-electron laser FELIX Radboud University, Netherlands. A free-electron laser ( FEL ) is a fourth generation light source producing extremely brilliant and short pulses of radiation. An FEL functions much as a laser but employs relativistic electrons as a gain medium instead of using stimulated emission from atomic or molecular excitations.
The equations may also need modifications to account for pair production of electron-positron pairs (or other particles at the highest temperatures). A plasma double layer with a large potential drop and layer separation, may accelerate electrons to relativistic velocities, and produce synchrotron radiation .
Hendrik Lorentz and Henri Poincaré developed their version of special relativity in a series of papers from about 1900 to 1905. They used Maxwell's equations and the principle of relativity to deduce a theory that is mathematically equivalent to the theory later developed by Einstein.