enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :

  3. Polynomial remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Polynomial_remainder_theorem

    Thus, the function may be more "cheaply" evaluated using synthetic division and the polynomial remainder theorem. The factor theorem is another application of the remainder theorem: if the remainder is zero, then the linear divisor is a factor. Repeated application of the factor theorem may be used to factorize the polynomial. [3]

  4. Synthetic division - Wikipedia

    en.wikipedia.org/wiki/Synthetic_division

    In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule ), but the method can be generalized to division by any polynomial .

  5. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    The theorem is frequently referred to as the division algorithm (although it is a theorem and not an algorithm), because its proof as given below lends itself to a simple division algorithm for computing q and r (see the section Proof for more). Division is not defined in the case where b = 0; see division by zero.

  6. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Another abbreviated method is polynomial short division (Blomqvist's method). Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that A = BQ + R,

  7. Stars and bars (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)

    Rather than a (k − 1)-set of bar positions taken from a set of size n − 1 as in the proof of Theorem one, we now have a (k − 1)-multiset of bar positions taken from a set of size n + 1 (since bar positions may repeat and since the ends are now allowed bar positions).

  8. ACL2 - Wikipedia

    en.wikipedia.org/wiki/ACL2

    The core of ACL2's theorem prover is based on term rewriting, and this core is extensible in that user-discovered theorems can be used as ad hoc proof techniques for subsequent conjectures. ACL2 is intended to be an "industrial strength" version of the Boyer–Moore theorem prover, NQTHM. Toward this goal, ACL2 has many features to support ...

  9. Proofs from THE BOOK - Wikipedia

    en.wikipedia.org/wiki/Proofs_from_THE_BOOK

    Proof of Bertrand's postulate; Fermat's theorem on sums of two squares; Two proofs of the Law of quadratic reciprocity; Proof of Wedderburn's little theorem asserting that every finite division ring is a field; Four proofs of the Basel problem; Proof that e is irrational (also showing the irrationality of certain related numbers) Hilbert's ...