Search results
Results from the WOW.Com Content Network
The term benthos, coined by Haeckel in 1891, [3] comes from the Greek noun βένθος 'depth of the sea'. [1] [4] Benthos is used in freshwater biology to refer to organisms at the bottom of freshwater bodies of water, such as lakes, rivers, and streams. [5] There is also a redundant synonym, Benton. [6]
Organisms living in this zone are called benthos and include microorganisms (e.g., bacteria and fungi) [2] [3] as well as larger invertebrates, such as crustaceans and polychaetes. [4] Organisms here, known as bottom dwellers, generally live in close relationship with the substrate and many are permanently attached to the bottom.
Filamentous cyanobacteria growing on an underwater surface. Phytobenthos (/. f aɪ t oʊ ˈ b ɛ n θ ɒ s /) (from Greek φυτόν (phyton, meaning "plants") and βένθος (benthos, meaning "depths") are autotrophic organisms found attached to bottom surfaces of aquatic environments, such as rocks, sediments, or even other organisms.
Some plants appear not to load phloem by active transport. In these cases, a mechanism known as the polymer trap mechanism was proposed by Robert Turgeon . [ 5 ] In this model, small sugars such as sucrose move into intermediary cells through narrow plasmodesmata, where they are polymerised to raffinose and other larger oligosaccharides .
Horse galloping The Horse in Motion, 24-camera rig with tripwires GIF animation of Plate 626 Gallop; thoroughbred bay mare Annie G. [1]. Animal Locomotion: An Electro-photographic Investigation of Consecutive Phases of Animal Movements is a series of scientific photographs by Eadweard Muybridge made in 1884 and 1885 at the University of Pennsylvania, to study motion in animals (including humans).
Benthic-pelagic coupling are processes that connect the benthic zone and the pelagic zone through the exchange of energy, mass, or nutrients. These processes play a prominent role in both freshwater and marine ecosystems and are influenced by a number of chemical, biological, and physical forces that are crucial to functions from nutrient cycling to energy transfer in food webs.
In addition, salt marsh plants tolerate high salinities by several physiological mechanisms, including excreting salt through salt glands and preventing salt uptake into the roots. In addition to these exposure stresses (temperature, desiccation, and salinity), intertidal organisms experience strong mechanical stresses, especially in locations ...
Macrobenthos consists of the organisms that live at the bottom of a water column [1] and are visible to the naked eye. [2] In some classification schemes, these organisms are larger than 1 mm; [1] in another, the smallest dimension must be at least 0.5 mm. [3] They include polychaete worms, pelecypods, anthozoans, echinoderms, sponges, ascidians, crustaceans.