Search results
Results from the WOW.Com Content Network
The Bogacki–Shampine method is implemented in the ode3 for fixed step solver and ode23 for a variable step solver function in MATLAB (Shampine & Reichelt 1997). Low-order methods are more suitable than higher-order methods like the Dormand–Prince method of order five, if only a crude approximation to the solution is required. Bogacki and ...
Multigrid methods can be generalized in many different ways. They can be applied naturally in a time-stepping solution of parabolic partial differential equations, or they can be applied directly to time-dependent partial differential equations. [12] Research on multilevel techniques for hyperbolic partial differential equations is underway. [13]
In many practical partial differential equations, one has a term that involves derivatives (such as a kinetic energy contribution), and a multiplication with a function (for example, a potential). In the spectral method, the solution ψ {\displaystyle \psi } is expanded in a suitable set of basis functions, for example plane waves,
Ordinary differential equations occur in many scientific disciplines, including physics, chemistry, biology, and economics. [1] In addition, some methods in numerical partial differential equations convert the partial differential equation into an ordinary differential equation, which must then be solved.
In fact, Clifford Gardner, John M. Greene, Martin Kruskal and Robert Miura developed the classical inverse scattering method to solve the KdV equation. The KdV equation was first introduced by Joseph Valentin Boussinesq ( 1877 , footnote on page 360) and rediscovered by Diederik Korteweg and Gustav de Vries in 1895, who found the simplest ...
The inverse scattering transform arose from studying solitary waves. J.S. Russell described a "wave of translation" or "solitary wave" occurring in shallow water. [5] First J.V. Boussinesq and later D. Korteweg and G. deVries discovered the Korteweg-deVries (KdV) equation, a nonlinear partial differential equation describing these waves. [5]
Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation. The method is to reduce a partial differential equation (PDE) to a family of ordinary differential equations (ODE) along which the solution can be integrated from some initial data ...
In mathematics, the method of matched asymptotic expansions [1] is a common approach to finding an accurate approximation to the solution to an equation, or system of equations. It is particularly used when solving singularly perturbed differential equations. It involves finding several different approximate solutions, each of which is valid (i ...