Search results
Results from the WOW.Com Content Network
Set sizes range from 8 to 30-kW (also 8 to 30-kVA single phase) for homes, small shops, and offices, with the larger industrial generators from 8-kW (11 kVA) up to 2,000-kW (2,500-kVA three phase) used for office complexes, factories, and other industrial facilities. A 2,000-kW set can be housed in a 40 ft (12 m) ISO container with a fuel tank ...
The base value should only be a magnitude, while the per-unit value is a phasor. The phase angles of complex power, voltage, current, impedance, etc., are not affected by the conversion to per unit values. The purpose of using a per-unit system is to simplify conversion between different transformers.
It is also known as a unipolar generator, acyclic generator, disk dynamo, or Faraday disc. The voltage is typically low, on the order of a few volts in the case of small demonstration models, but large research generators can produce hundreds of volts, and some systems have multiple generators in series to produce an even larger voltage. [ 18 ]
North American transformers usually power homes at 240 volts, similar to Europe's 230 volts. It is the split-phase that allows use of 120 volts in the home. Japan's utility frequencies are 50 Hz and 60 Hz. In the electricity sector in Japan, the standard voltage is 100 V, with both 50 and 60 Hz AC frequencies being used.
Both types of loads will absorb energy during part of the AC cycle, which is stored in the device's magnetic or electric field, only to return this energy back to the source during the rest of the cycle. For example, to get 1 kW of real power, if the power factor is unity, 1 kVA of apparent power needs to be transferred (1 kW ÷ 1 = 1 kVA).
Different classes of loads (for example, lighting, fixed motors, and traction/railway systems) required different voltages, and so used different generators and circuits. [7] [8] Thus, generators were sited near their loads, a practice that later became known as distributed generation using large numbers of small generators. [9]
A kilowatt-hour (unit symbol: kW⋅h or kW h; commonly written as kWh) is a non-SI unit of energy equal to 3.6 megajoules (MJ) in SI units, which is the energy delivered by one kilowatt of power for one hour. Kilowatt-hours are a common billing unit for electrical energy supplied by electric utilities.
An engine–generator is the combination of an electrical generator and an engine (prime mover) mounted together to form a single piece of equipment. This combination is also called an engine–generator set or a gen-set. In many contexts, the engine is taken for granted and the combined unit is simply called a generator. An engine–generator ...