Search results
Results from the WOW.Com Content Network
The odd greedy algorithm cannot terminate when given a fraction with an even denominator, because these fractions do not have finite representations with odd denominators. Therefore, in this case, it produces an infinite series expansion of its input. For instance Sylvester's sequence can be viewed as generated by the odd greedy expansion of 1/2.
Simplifying this further gives us the solution x = −3. It is easily checked that none of the zeros of x ( x + 1)( x + 2) – namely x = 0 , x = −1 , and x = −2 – is a solution of the final equation, so no spurious solutions were introduced.
In mathematics, the greedy algorithm for Egyptian fractions is a greedy algorithm, first described by Fibonacci, for transforming rational numbers into Egyptian fractions. An Egyptian fraction is a representation of an irreducible fraction as a sum of distinct unit fractions , such as 5 / 6 = 1 / 2 + 1 / 3 .
For divergent continued fractions, we can distinguish three cases: The two sequences {Τ 2n−1} and {Τ 2n} might themselves define two convergent continued fractions that have two different values, x odd and x even. In this case the continued fraction defined by the sequence {Τ n} diverges by oscillation between two distinct limit points.
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
Quadratic surd: A root of a quadratic equation with rational coefficients. Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
The method works as follows. For searching the roots in some interval, one changes first the variable for mapping the interval onto [0, 1] giving a new polynomial q(x). For searching the roots of q in [0, 1], one maps the interval [0, 1] onto [0, +∞]) by the change of variable +, giving a polynomial r(x).