Search results
Results from the WOW.Com Content Network
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra. For example, in elementary arithmetic , one has 2 ⋅ ( 1 + 3 ) = ( 2 ⋅ 1 ) + ( 2 ⋅ 3 ) . {\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}
In the second step, the distributive law is used to simplify each of the two terms. Note that this process involves a total of three applications of the distributive property. In contrast to the FOIL method, the method using distributivity can be applied easily to products with more terms such as trinomials and higher.
R is a monoid under multiplication, meaning that: (a · b) · c = a · (b · c) for all a, b, c in R (that is, ⋅ is associative). There is an element 1 in R such that a · 1 = a and 1 · a = a for all a in R (that is, 1 is the multiplicative identity). [b] Multiplication is distributive with respect to addition, meaning that:
The definition of matrix product requires that the entries belong to a semiring, and does not require multiplication of elements of the semiring to be commutative. In many applications, the matrix elements belong to a field, although the tropical semiring is also a common choice for graph shortest path problems. [15]
It also satisfies the distributive law, meaning that (+) = +. These properties may be summarized by saying that the dot product is a bilinear form . Moreover, this bilinear form is positive definite , which means that a ⋅ a {\displaystyle \mathbf {a} \cdot \mathbf {a} } is never negative, and is zero if and only if a = 0 {\displaystyle ...
Thus any distributive meet-semilattice in which binary joins exist is a distributive lattice. A join-semilattice is distributive if and only if the lattice of its ideals (under inclusion) is distributive. [1] This definition of distributivity allows generalizing some statements about distributive lattices to distributive semilattices.
The integer zero is a special third case, being neither positive nor negative. The corresponding definition of addition must proceed by cases: For an integer n, let |n| be its absolute value. Let a and b be integers. If either a or b is zero, treat it as an identity. If a and b are both positive, define a + b = |a| + |b|.
By definition, equality is an equivalence relation, meaning it is reflexive (i.e. =), symmetric (i.e. if = then =), and transitive (i.e. if = and = then =). [33] It also satisfies the important property that if two symbols are used for equal things, then one symbol can be substituted for the other in any true statement about the first and the ...