Search results
Results from the WOW.Com Content Network
Conceptual questions or conceptual problems in science, technology, engineering, and mathematics (STEM) education are questions that can be answered based only on the knowledge of relevant concepts, rather than performing extensive calculations. They contrast with most homework and exam problems in science and engineering that typically require ...
The general consensus of large-scale studies that compare traditional mathematics with reform mathematics is that students in both curricula learn basic skills to about the same level as measured by traditional standardized tests, but the reform mathematics students do better on tasks requiring conceptual understanding and problem solving. [3]
A concept definition is similar to the usual notion of a definition in mathematics, with the distinction that it is personal to an individual: "a personal concept definition can differ from a formal concept definition, the latter being a concept definition which is accepted by the mathematical community at large." [1]
Procedural knowledge (i.e., knowledge-how) is different from descriptive knowledge (i.e., knowledge-that) in that it can be directly applied to a task. [2] [4] For instance, the procedural knowledge one uses to solve problems differs from the declarative knowledge one possesses about problem solving because this knowledge is formed by doing.
Computational thinking (CT) refers to the thought processes involved in formulating problems so their solutions can be represented as computational steps and algorithms. [1] In education, CT is a set of problem-solving methods that involve expressing problems and their solutions in ways that a computer could also execute. [ 2 ]
The CESSM de-emphasised manual arithmetic in favor of students developing their own conceptual thinking and problem solving. The PSSM presents a more balanced view, but still has the same emphases. Mathematics instruction in this style has been labeled standards-based mathematics [1] or reform mathematics. [2]
Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being (hereinafter WMCF) is a book by George Lakoff, a cognitive linguist, and Rafael E. Núñez, a psychologist. Published in 2000, WMCF seeks to found a cognitive science of mathematics, a theory of embodied mathematics based on conceptual metaphor.
The largest supporter of reform in the US has been the National Council of Teachers of Mathematics. [4]One aspect of the debate is over how explicitly children must be taught skills based on formulas or algorithms (fixed, step-by-step procedures for solving math problems) versus a more inquiry-based approach in which students are exposed to real-world problems that help them develop fluency in ...