Search results
Results from the WOW.Com Content Network
In mathematics, the characteristic equation (or auxiliary equation [1]) is an algebraic equation of degree n upon which depends the solution of a given n th-order differential equation [2] or difference equation. [3] [4] The characteristic equation can only be formed when the differential equation is linear and homogeneous, and has constant ...
Just as in chemistry, the characteristic property of a material will serve to identify a sample, or in the study of materials, structures and properties will determine characterization, in mathematics there is a continual effort to express properties that will distinguish a desired feature in a theory or system. Characterization is not unique ...
For example, if p is prime and q(X) is an irreducible polynomial with coefficients in the field with p elements, then the quotient ring [] / (()) is a field of characteristic p. Another example: The field C {\displaystyle \mathbb {C} } of complex numbers contains Z {\displaystyle \mathbb {Z} } , so the characteristic of C {\displaystyle \mathbb ...
Purely inseparable extensions do occur naturally; for example, they occur in algebraic geometry over fields of prime characteristic. If K is a field of characteristic p , and if V is an algebraic variety over K of dimension greater than zero, the function field K ( V ) is a purely inseparable extension over the subfield K ( V ) p of p th powers ...
In other words, the perfection R(A) of A is a perfect ring of characteristic p together with a map θ : R(A) → A such that for any perfect ring B of characteristic p equipped with a map φ : B → A, there is a unique map f : B → R(A) such that φ factors through θ (i.e. φ = θf). The perfection of A may be constructed as follows.
In model theory, a transfer principle states that all statements of some language that are true for some structure are true for another structure. One of the first examples was the Lefschetz principle, which states that any sentence in the first-order language of fields that is true for the complex numbers is also true for any algebraically closed field of characteristic 0.
In mathematics, the Riemann–Hurwitz formula, named after Bernhard Riemann and Adolf Hurwitz, describes the relationship of the Euler characteristics of two surfaces when one is a ramified covering of the other. It therefore connects ramification with algebraic topology, in this case.
Characteristic equation may refer to: Characteristic equation (calculus), used to solve linear differential equations; Characteristic equation, the equation obtained by equating to zero the characteristic polynomial of a matrix or of a linear mapping; Method of characteristics, a technique for solving partial differential equations