Search results
Results from the WOW.Com Content Network
In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size. The main types of inequality are less than (<) and greater than (>).
Inequation. Mathematical statement that two values are not equal. In mathematics, an inequation is a statement that an inequality holds between two values. [1][2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation.
Linear inequality. In mathematics a linear inequality is an inequality which involves a linear function. A linear inequality contains one of the symbols of inequality: [1] < less than. > greater than. ≤ less than or equal to. ≥ greater than or equal to. ≠ not equal to.
The triangle inequality is a defining property of norms and measures of distance. This property must be established as a theorem for any function proposed for such purposes for each particular space: for example, spaces such as the real numbers, Euclidean spaces, the L p spaces (p ≥ 1), and inner product spaces.
Mathematical inequality relating inner products and norms. The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality) [1][2][3][4] is an upper bound on the inner product between two vectors in an inner product space in terms of the product of the vector norms. It is considered one of the most important and widely ...
Bhatia–Davis inequality, an upper bound on the variance of any bounded probability distribution. Bernstein inequalities (probability theory) Boole's inequality. Borell–TIS inequality. BRS-inequality. Burkholder's inequality. Burkholder–Davis–Gundy inequalities. Cantelli's inequality. Chebyshev's inequality.
Nesbitt's inequality. In mathematics, Nesbitt's inequality, named after Alfred Nesbitt, states that for positive real numbers a, b and c, with equality only when (i. e. in an equilateral triangle). There is no corresponding upper bound as any of the 3 fractions in the inequality can be made arbitrarily large.
Bernoulli's inequality. An illustration of Bernoulli's inequality, with the graphs of and shown in red and blue respectively. Here, In mathematics, Bernoulli's inequality (named after Jacob Bernoulli) is an inequality that approximates exponentiations of . It is often employed in real analysis. It has several useful variants: [1]