enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass flux - Wikipedia

    en.wikipedia.org/wiki/Mass_flux

    Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.

  3. Mass flow rate - Wikipedia

    en.wikipedia.org/wiki/Mass_flow_rate

    Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass through a surface per time .. The overdot on ˙ is Newton's notation for a time derivative.Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.

  4. de Laval nozzle - Wikipedia

    en.wikipedia.org/wiki/De_Laval_nozzle

    Diagram of a de Laval nozzle, showing approximate flow velocity (v), together with the effect on temperature (T) and pressure (p) A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence.

  5. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  6. Hydraulic analogy - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_analogy

    The mass of the rotor and the surface area of the vanes restricts the water's ability to rapidly change its rate of flow (current) through the pump due to the effects of inertia, but, given time, a constant flowing stream will pass mostly unimpeded through the pump, as the rotor turns at the same speed as the water flow. The mass of the rotor ...

  7. Impedance analogy - Wikipedia

    en.wikipedia.org/wiki/Impedance_analogy

    The mechanical symbol for a mass (left) and its electrical analogy (right). [7] The square angle below the mass is meant to indicate that movement of the mass is relative to a frame of reference. [9] The mechanical analogy of inductance in the impedance analogy is mass. A mechanical component analogous to an inductor is a large, rigid weight ...

  8. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.

  9. Mass flow controller - Wikipedia

    en.wikipedia.org/wiki/Mass_flow_controller

    A mass flow controller is designed and calibrated to control a specific type of liquid or gas at a particular range of flow rates. The MFC can be given a setpoint from 0 to 100% of its full scale range but is typically operated in the 10 to 90% of full scale where the best accuracy is achieved.