Search results
Results from the WOW.Com Content Network
A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation , where N is the quantity and λ ( lambda ) is a positive rate called the exponential decay constant , disintegration constant , [ 1 ] rate constant , [ 2 ] or ...
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
Such a system doesn't oscillate at all, but when displaced from its equilibrium steady-state output it returns to it by exponential decay, approaching the steady state value asymptotically. It has an impulse response that is the sum of two decaying exponential functions with different rates of decay. As the quality factor decreases the slower ...
The term "half-life" is almost exclusively used for decay processes that are exponential (such as radioactive decay or the other examples above), or approximately exponential (such as biological half-life discussed below). In a decay process that is not even close to exponential, the half-life will change dramatically while the decay is happening.
Damping ratio: is a non-dimensional characterization of the decay rate relative to the frequency, approximately = /, or exactly = / + <. Q factor : Q = 1 / ( 2 ζ ) {\displaystyle Q=1/(2\zeta )} is another non-dimensional characterization of the amount of damping; high Q indicates slow damping relative to the oscillation.
First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.
Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...
Particle decay is a Poisson process, and hence the probability that a particle survives for time t before decaying (the survival function) is given by an exponential distribution whose time constant depends on the particle's velocity: = where