Search results
Results from the WOW.Com Content Network
Cooling capacity is the measure of a cooling system's ability to remove heat. [1] It is equivalent to the heat supplied to the evaporator/boiler part of the refrigeration cycle and may be called the "rate of refrigeration" or "refrigeration capacity".
Vapor-compression refrigeration [6] For comparison, a simple stylized diagram of a heat pump's vapor-compression refrigeration cycle: 1) condenser, 2) expansion valve, 3) evaporator, 4) compressor (Note that this diagram is flipped vertically and horizontally compared to the previous one) [7] Temperature–entropy diagram of the vapor-compression cycle.
diagram of a double-effect falling film evaporator. Condensing vapors from flash tank B1 heat evaporator A2. •1=feed •2=product •3=steam •4=vapors. In chemical engineering, a multiple-effect evaporator is an apparatus for efficiently using the heat from steam to evaporate water. [1]
When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of ...
An evaporator is a type of heat exchanger device that facilitates evaporation by utilizing conductive and convective heat transfer, which provides the necessary thermal energy for phase transition from liquid to vapour. Within evaporators, a circulating liquid is exposed to an atmospheric or reduced pressure environment causing it to boil at a ...
A thermal expansion valve is a key element to a heat pump; this is the cycle that makes air conditioning, or air cooling, possible.A basic refrigeration cycle consists of four major elements: a compressor, a condenser, a metering device and an evaporator.
A huge portion of refrigeration systems use part of the condenser for subcooling which, though very effective and simple, may be considered a diminishing factor in the nominal condensing capacity. A similar situation may be found with superheating taking place in the evaporator, thus an internal heat exchanger is a good and relatively cheap ...
In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger.