Search results
Results from the WOW.Com Content Network
Extranuclear inheritance (also known as cytoplasmic inheritance) is a form of non-Mendelian inheritance also first discovered by Carl Correns in 1908. [9] While working with Mirabilis jalapa, Correns observed that leaf colour was dependent only on the genotype of the maternal parent.
Carl Erich Correns and Erwin Baur, in separately conducted researches on Pelargonium and Mirabilis plants, observed a green-white variation (later found as the result of mutations in the chloroplast genome) that did not follow the Mendelian laws of inheritance. Nearly twenty years later, non-mendelian inheritance of a mitochondrial mutation was ...
Cytoplasmic male sterility, as the name indicates, is under extranuclear genetic control (under control of the mitochondrial or plastid genomes). It shows non-Mendelian inheritance, with male sterility inherited maternally. In general, there are two types of cytoplasm: N (normal) and aberrant S (sterile) cytoplasms.
A polygene is a member of a group of non-epistatic genes that interact additively to influence a phenotypic trait, thus contributing to multiple-gene inheritance (polygenic inheritance, multigenic inheritance, quantitative inheritance [1]), a type of non-Mendelian inheritance, as opposed to single-gene inheritance, which is the core notion of Mendelian inheritance.
Biparental inheritance is a type of biological inheritance where the progeny inherits a maternal and a paternal allele for one gene. It is one of the criteria for Mendelian inheritance . Sexual reproduction , where offspring result from the fusion of gametes from two parents, is the most common form of biparental inheritance.
This uniparental inheritance is an example of non-Mendelian inheritance. Plants also show uniparental mtDNA inheritance. Most plants inherit mtDNA maternally with one noted exception being the redwood Sequoia sempervirens that inherit mtDNA paternally. [46] There are two theories why the paternal mtDNA is rarely transmitted to the offspring ...
Purely Mendelian traits are a minority of all traits, since most phenotypic traits exhibit incomplete dominance, codominance, and contributions from many genes. If a trait is genetically influenced, but not well characterized by Mendelian inheritance, it is non-Mendelian.
Mitochondrial inheritance is therefore non-Mendelian, as Mendelian inheritance presumes that half the genetic material of a fertilized egg derives from each parent. This allowed the creation of mitochondrial DNA haplogroups to study population genetics.