Search results
Results from the WOW.Com Content Network
An m × n rectangular Vandermonde matrix such that m ≤ n has rank m if and only if all x i are distinct. An m × n rectangular Vandermonde matrix such that m ≥ n has rank n if and only if there are n of the x i that are distinct. A square Vandermonde matrix is invertible if and only if the x i are distinct. An explicit formula for the ...
A diagonal matrix where the diagonal elements are either +1 or −1. Single-entry matrix: A matrix where a single element is one and the rest of the elements are zero. Skew-Hermitian matrix: A square matrix which is equal to the negative of its conjugate transpose, A * = −A. Skew-symmetric matrix
On the one hand, one chooses elements out of a first set of elements; then out of another set, and so on, through such sets, until a total of elements have been chosen from the sets. One therefore chooses m {\displaystyle \textstyle m} elements out of n 1 + ⋯ + n p {\displaystyle \textstyle n_{1}+\dots +n_{p}} in the left-hand side, which is ...
The matrix X on the left is a Vandermonde matrix, whose determinant is known to be () = < (), which is non-zero since the nodes are all distinct. This ensures that the matrix is invertible and the equation has the unique solution A = X − 1 ⋅ Y {\displaystyle A=X^{-1}\cdot Y} ; that is, p ( x ) {\displaystyle p(x)} exists and is unique.
The defining property of the Vandermonde polynomial is that it is alternating in the entries, meaning that permuting the by an odd permutation changes the sign, while permuting them by an even permutation does not change the value of the polynomial – in fact, it is the basic alternating polynomial, as will be made precise below.
In this case, if we make a very large matrix with complex exponentials in the rows (i.e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the Fredholm integral equation of the 2nd kind, namely the Fourier operator that defines the continuous Fourier transform. A rectangular ...
A chemical element, often simply called an element, is a type of atom which has a specific number of protons in its atomic nucleus (i.e., a specific atomic number, or Z). [ 1 ] The definitive visualisation of all 118 elements is the periodic table of the elements , whose history along the principles of the periodic law was one of the founding ...
In linear algebra, an alternant matrix is a matrix formed by applying a finite list of functions pointwise to a fixed column of inputs. An alternant determinant is the determinant of a square alternant matrix.