enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 3-sphere - Wikipedia

    en.wikipedia.org/wiki/3-sphere

    It is called a 3-sphere because topologically, the surface itself is 3-dimensional, even though it is curved into the 4th dimension. For example, when traveling on a 3-sphere, you can go north and south, east and west, or along a 3rd set of cardinal directions. This means that a 3-sphere is an example of a 3-manifold.

  3. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    The ordinary sphere is a 2-sphere, because it is a 2-dimensional surface which is embedded in 3-dimensional space. In topology, the n-sphere is an example of a compact topological manifold without boundary. A topological sphere need not be smooth; if it is smooth, it need not be diffeomorphic to the Euclidean sphere (an exotic sphere).

  4. 3-manifold - Wikipedia

    en.wikipedia.org/wiki/3-manifold

    The 3-sphere is an especially important 3-manifold because of the now-proven Poincaré conjecture. Originally conjectured by Henri Poincaré, the theorem concerns a space that locally looks like ordinary three-dimensional space but is connected, finite in size, and lacks any boundary (a closed 3-manifold).

  5. Surface (topology) - Wikipedia

    en.wikipedia.org/wiki/Surface_(topology)

    In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right.

  6. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center. In the intrinsic approach, a great circle is a geodesic; a shortest path between any two of its points provided they are close enough. Or, in the (also intrinsic) axiomatic approach analogous to Euclid's axioms of plane ...

  7. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    Another type of sphere arises from a 4-ball, whose three-dimensional surface is the 3-sphere: points equidistant to the origin of the euclidean space R 4. If a point has coordinates, P ( x , y , z , w ) , then x 2 + y 2 + z 2 + w 2 = 1 characterizes those points on the unit 3-sphere centered at the origin.

  8. Mandelbulb - Wikipedia

    en.wikipedia.org/wiki/Mandelbulb

    For n > 3, the result is a 3-dimensional bulb-like structure with fractal surface detail and a number of "lobes" depending on n. Many of their graphic renderings use n = 8. However, the equations can be simplified into rational polynomials when n is odd. For example, in the case n = 3, the third power can be simplified into the more elegant form:

  9. Spherical 3-manifold - Wikipedia

    en.wikipedia.org/wiki/Spherical_3-manifold

    The lens space L(1,0) is the 3-sphere, and the lens space L(2,1) is 3 dimensional real projective space. Lens spaces can be represented as Seifert fiber spaces in many ways, usually as fiber spaces over the 2-sphere with at most two exceptional fibers, though the lens space with fundamental group of order 4 also has a representation as a ...