Search results
Results from the WOW.Com Content Network
In fracture mechanics, the stress intensity factor (K) is used to predict the stress state ("stress intensity") near the tip of a crack or notch caused by a remote load or residual stresses. [1] It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle ...
Concrete fracture analysis is part of fracture mechanics that studies crack propagation and related failure modes in concrete. [17] As it is widely used in construction, fracture analysis and modes of reinforcement are an important part of the study of concrete, and different concretes are characterized in part by their fracture properties. [ 18 ]
Stress triaxiality has important applications in fracture mechanics and can often be used to predict the type of fracture (i.e. ductile or brittle) within the region defined by that stress state. A higher stress triaxiality corresponds to a stress state which is primarily hydrostatic rather than deviatoric .
Similitude has been well documented for a large number of engineering problems and is the basis of many textbook formulas and dimensionless quantities. These formulas and quantities are easy to use without having to repeat the laborious task of dimensional analysis and formula derivation.
In a 1961 paper, P. C. Paris introduced the idea that the rate of crack growth may depend on the stress intensity factor. [4] Then in their 1963 paper, Paris and Erdogan indirectly suggested the equation with the aside remark "The authors are hesitant but cannot resist the temptation to draw the straight line slope 1/4 through the data" after reviewing data on a log-log plot of crack growth ...
In practical engineering applications for cylinders (pipes and tubes), hoop stress is often re-arranged for pressure, and is called Barlow's formula. Inch-pound-second system (IPS) units for P are pounds-force per square inch (psi). Units for t, and d are inches (in). SI units for P are pascals (Pa), while t and d=2r are in meters (m).
In science and engineering, hydraulic conductivity (K, in SI units of meters per second), is a property of porous materials, soils and rocks, that describes the ease with which a fluid (usually water) can move through the pore space, or fracture network. [1]
The methods of structural fracture mechanics are used as checking calculations to estimate sensitivity of a structure to its component failure. [citation needed] Catastrophe failure model and reserve ability of a complex system. The model [2] supposes that failure of several elements causes neighboring elements overloading. The model equation ...