Search results
Results from the WOW.Com Content Network
The brain utilizes subtle differences in loudness, tone and timing between the two ears to allow us to localize sound sources. [10] Localization can be described in terms of three-dimensional position: the azimuth or horizontal angle, the zenith or vertical angle, and the distance (for static sounds) or velocity (for moving sounds). [ 11 ]
The precedence effect or law of the first wavefront is a binaural psychoacoustical effect concerning sound reflection and the perception of echoes.When two versions of the same sound presented are separated by a sufficiently short time delay (below the listener's echo threshold), listeners perceive a single auditory event; its perceived spatial location is dominated by the location of the ...
Sound pressure is the difference, in a given medium, between average local pressure and the pressure in the sound wave. A square of this difference (i.e., a square of the deviation from the equilibrium pressure) is usually averaged over time and/or space, and a square root of this average provides a root mean square (RMS) value.
HRTF filtering effect. A head-related transfer function (HRTF) is a response that characterizes how an ear receives a sound from a point in space. As sound strikes the listener, the size and shape of the head, ears, ear canal, density of the head, size and shape of nasal and oral cavities, all transform the sound and affect how it is perceived, boosting some frequencies and attenuating others.
The information intercepted by the passage of sound waves through the ear is understood and interpreted through the brain, emphasizing the connection between the mind and acoustics. Psychological changes have been seen as brain waves slow down or speed up as a result of varying auditory stimulus which can in turn affect the way one thinks ...
Place theory is a theory of hearing that states that our perception of sound depends on where each component frequency produces vibrations along the basilar membrane.By this theory, the pitch of a sound, such as a human voice or a musical tone, is determined by the places where the membrane vibrates, based on frequencies corresponding to the tonotopic organization of the primary auditory neurons.
Echoic memory is the sensory memory that registers specific to auditory information (sounds). Once an auditory stimulus is heard, it is stored in memory so that it can be processed and understood. [1]
For sound with a known spectrum (e.g. speech) the distance can be estimated roughly with the help of the perceived sound. ITDG: The Initial Time Delay Gap describes the time difference between arrival of the direct wave and first strong reflection at the listener.