enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    The absolute value function is continuous (i.e. it has no gaps). It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be ...

  3. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    An everywhere differentiable function g : R → R is Lipschitz continuous (with K = sup |g′(x)|) if and only if it has a bounded first derivative; one direction follows from the mean value theorem. In particular, any continuously differentiable function is locally Lipschitz, as continuous functions are locally bounded so its gradient is ...

  4. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    If a continuous function on an open interval (,) satisfies the equality () =for all compactly supported smooth functions on (,), then is identically zero. [1] [2]Here "smooth" may be interpreted as "infinitely differentiable", [1] but often is interpreted as "twice continuously differentiable" or "continuously differentiable" or even just "continuous", [2] since these weaker statements may be ...

  5. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    the function f is n − 1 times continuously differentiable on the closed interval [a, b] and the n th derivative exists on the open interval (a, b), and; there are n intervals given by a 1 < b 1 ≤ a 2 < b 2 ≤ ⋯ ≤ a n < b n in [a, b] such that f (a k) = f (b k) for every k from 1 to n. Then there is a number c in (a, b) such that the n ...

  6. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    A function of class is a function of smoothness at least k; that is, a function of class is a function that has a k th derivative that is continuous in its domain. A function of class or -function (pronounced C-infinity function) is an infinitely differentiable function, that is, a function that has derivatives of all orders (this implies that ...

  7. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    The Weierstrass function has historically served the role of a pathological function, being the first published example (1872) specifically concocted to challenge the notion that every continuous function is differentiable except on a set of isolated points. [1]

  8. Semi-differentiability - Wikipedia

    en.wikipedia.org/wiki/Semi-differentiability

    Let f denote a real-valued function defined on a subset I of the real numbers.. If a ∈ I is a limit point of I ∩ [a,∞) and the one-sided limit + ():= + () exists as a real number, then f is called right differentiable at a and the limit ∂ + f(a) is called the right derivative of f at a.

  9. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1. The mathematical rigor of the delta function was disputed until Laurent Schwartz developed the theory of distributions, where it is defined as a linear form acting on functions.