enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.

  3. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    A given partially ordered set may have several different completions. For instance, one completion of any partially ordered set S is the set of its downwardly closed subsets ordered by inclusion. S is embedded in this (complete) lattice by mapping each element x to the lower set of elements that are less than or equal to x.

  4. Maximal and minimal elements - Wikipedia

    en.wikipedia.org/wiki/Maximal_and_minimal_elements

    If the preordered set (,) also happens to be a partially ordered set (or more generally, if the restriction (,) is a partially ordered set) then is a maximal element of if and only if contains no element strictly greater than ; explicitly, this means that there does not exist any element such that and .

  5. Join and meet - Wikipedia

    en.wikipedia.org/wiki/Join_and_meet

    Join and meet are dual to one another with respect to order inversion. A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice. A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice.

  6. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions ...

  7. Duality (order theory) - Wikipedia

    en.wikipedia.org/wiki/Duality_(order_theory)

    In the mathematical area of order theory, every partially ordered set P gives rise to a dual (or opposite) partially ordered set which is often denoted by P op or P d.This dual order P op is defined to be the same set, but with the inverse order, i.e. x ≤ y holds in P op if and only if y ≤ x holds in P.

  8. Tree (set theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(set_theory)

    The partially ordered set on the right (in red) is not a tree because x 1 < x 3 and x 2 < x 3, but x 1 is not comparable to x 2 (dashed orange line). A tree is a partially ordered set (poset) (T, <) such that for each t ∈ T, the set {s ∈ T : s < t} is well-ordered by the relation <. In particular, each well-ordered set (T, <) is a tree.

  9. Galois connection - Wikipedia

    en.wikipedia.org/wiki/Galois_connection

    Every partially ordered set can be viewed as a category in a natural way: there is a unique morphism from x to y if and only if x ≤ y. A monotone Galois connection is then nothing but a pair of adjoint functors between two categories that arise from partially ordered sets.