Search results
Results from the WOW.Com Content Network
It is defined as the activity of a quantity of radioactive material in which one million nuclei decay per second. It is therefore equivalent to one megabecquerel, and one becquerel equals one microrutherford. One rutherford is equivalent to 2. 702 × 10 −5 curie, or 37 000 rutherfords for one curie. The unit was introduced in 1946. [1]
The activity of a sample decreases with time because of decay. The rules of radioactive decay may be used to convert activity to an actual number of atoms. They state that 1 Ci of radioactive atoms would follow the expression N (atoms) × λ (s −1) = 1 Ci = 3.7 × 10 10 Bq, and so N = 3.7 × 10 10 Bq / λ, where λ is the decay constant in s ...
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.
1 Bq = 1 s −1. A special name was introduced for the reciprocal second (s −1) to represent radioactivity to avoid potentially dangerous mistakes with prefixes.For example, 1 μs −1 would mean 10 6 disintegrations per second: (10 −6 s) −1 = 10 6 s −1, [4] whereas 1 μBq would mean 1 disintegration per 1 million seconds.
Many of these in theory could decay through spontaneous fission, alpha decay, double beta decay, etc. with a very long half-life, but no radioactive decay has yet been observed. Thus, the number of stable nuclides is subject to change if some of these 251 are determined to be very long-lived radioactive nuclides in the future.
In the context of radioactivity, activity or total activity (symbol A) is a physical quantity defined as the number of radioactive transformations per second that occur in a particular radionuclide. [3] The unit of activity is the becquerel (symbol Bq), which is defined equivalent to reciprocal seconds (symbol s −1).
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
λ indicates the radioactivity decay constant in nuclear physics and radioactivity. This constant is very simply related (by a multiplicative constant) to the half-life of any radioactive material. In probability theory, λ represents the density of occurrences within a time interval, as modelled by the Poisson distribution.