enow.com Web Search

  1. Ad

    related to: what is stochastic differential equation explained in terms of k and n in physics

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic differential equation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_differential...

    A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, [1] resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices , [ 2 ] random ...

  3. Stochastic quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Stochastic_quantum_mechanics

    Stochastic quantum mechanics is a framework for describing the dynamics of particles that are subjected to an intrinsic random processes as well as various external forces. The framework provides a derivation of the diffusion equations associated to these stochastic particles.

  4. Supersymmetric theory of stochastic dynamics - Wikipedia

    en.wikipedia.org/wiki/Supersymmetric_Theory_of...

    The first relation between supersymmetry and stochastic dynamics was established in two papers in 1979 and 1982 by Giorgio Parisi and Nicolas Sourlas, [1] [2] who demonstrated that the application of the BRST gauge fixing procedure to Langevin SDEs, i.e., to SDEs with linear phase spaces, gradient flow vector fields, and additive noises, results in N=2 supersymmetric models.

  5. Feynman–Kac formula - Wikipedia

    en.wikipedia.org/wiki/Feynman–Kac_formula

    The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations and stochastic processes.In 1947, when Kac and Feynman were both faculty members at Cornell University, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions. [1]

  6. Langevin equation - Wikipedia

    en.wikipedia.org/wiki/Langevin_equation

    In physics, a Langevin equation (named after Paul Langevin) is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison ...

  7. Itô's lemma - Wikipedia

    en.wikipedia.org/wiki/Itô's_lemma

    Suppose we are given the stochastic differential equation = + , where B t is a Wiener process and the functions , are deterministic (not stochastic) functions of time. In general, it's not possible to write a solution X t {\displaystyle X_{t}} directly in terms of B t . {\displaystyle B_{t}.}

  8. Stochastic processes and boundary value problems - Wikipedia

    en.wikipedia.org/wiki/Stochastic_processes_and...

    Let be a domain (an open and connected set) in .Let be the Laplace operator, let be a bounded function on the boundary, and consider the problem: {() =, = (),It can be shown that if a solution exists, then () is the expected value of () at the (random) first exit point from for a canonical Brownian motion starting at .

  9. Ornstein–Uhlenbeck process - Wikipedia

    en.wikipedia.org/wiki/Ornstein–Uhlenbeck_process

    In physics and engineering disciplines, it is a common representation for the Ornstein–Uhlenbeck process and similar stochastic differential equations by tacitly assuming that the noise term is a derivative of a differentiable (e.g. Fourier) interpolation of the Wiener process.

  1. Ad

    related to: what is stochastic differential equation explained in terms of k and n in physics