Search results
Results from the WOW.Com Content Network
Luminous intensity, a photometric quantity measured in lumens per steradian (lm/sr), or candela (cd) Irradiance, a radiometric quantity, measured in watts per square meter (W/m 2) Intensity (physics), the name for irradiance used in other branches of physics (W/m 2) Radiance, commonly called "intensity" in astronomy and astrophysics (W·sr −1 ...
In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.
An example of light exhibiting sub-Poissonian statistics is squeezed light. Recently researchers have shown that sub-Poissonian light can be induced in a quantum dot exhibiting resonance fluorescence. [5] A technique used to measure the sub-Poissonian structure of light is a homodyne intensity correlation scheme. [6]
The Maxwell theory predicts that the energy of a light wave depends only on its intensity, not on its frequency; nevertheless, several independent types of experiments show that the energy imparted by light to atoms depends only on the light's frequency, not on its intensity.
The 26th General Conference on Weights and Measures (CGPM) redefined the candela in 2018. [10] [11] The new definition, which took effect on 20 May 2019, is: The candela [...] is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, [a] K cd, to be 683 when expressed in the unit lm W −1, which is equal to cd sr W −1 ...
The lumen is defined as amount of light given into one steradian by a point source of one candela strength; while the candela, a base SI unit, is defined as the luminous intensity of a source of monochromatic radiation, of frequency 540 terahertz, and a radiant intensity of 1/683 watts per steradian.
The attenuation coefficient contribution for pair production is given by: [8] [9] where is the rest mass of the electron and is the speed of light. Hence, at high γ-ray energies, the energy absorption depends both on the density and average atomic number of the scintillator.
Intensity is used most frequently with waves such as acoustic waves , matter waves such as electrons in electron microscopes, and electromagnetic waves such as light or radio waves, in which case the average power transfer over one period of the wave is used. Intensity can be applied