Search results
Results from the WOW.Com Content Network
Neurons communicate with other cells via synapses, which are specialized connections that commonly use minute amounts of chemical neurotransmitters to pass the electric signal from the presynaptic neuron to the target cell through the synaptic gap. Neurons are the main components of nervous tissue in all animals except sponges and placozoans.
These sensory neurons are responsible for detecting different taste qualities, such as sweet, sour, salty, bitter, and savory. When you eat or drink something, chemicals in the food or liquid interact with receptors on these sensory neurons, triggering signals that are sent to the brain.
Neurons are polarised cells that are specialised for the conduction of action potentials also called nerve impulses. [1] They can also synthesise membrane and protein. Neurons communicate with other neurons using neurotransmitters released from their synapses, and they may be inhibitory, excitatory or neuromodulatory. [5]
The cells of the brain include neurons and supportive glial cells. There are more than 86 billion neurons in the brain, and a more or less equal number of other cells. Brain activity is made possible by the interconnections of neurons and their release of neurotransmitters in response to nerve impulses.
The sensory nervous system is a part of the nervous system responsible for processing sensory information. A sensory system consists of sensory neurons (including the sensory receptor cells), neural pathways, and parts of the brain involved in sensory perception and interoception.
The connections between neurons can form neural pathways, neural circuits, and larger networks that generate an organism's perception of the world and determine its behavior. Along with neurons, the nervous system contains other specialized cells called glial cells (or simply glia), which
Anatomy of a multipolar neuron. A neural circuit is a population of neurons interconnected by synapses to carry out a specific function when activated. [1] Multiple neural circuits interconnect with one another to form large scale brain networks.
Morphological differences are reflected in the nervous system phenotype, such as: absence of lateral motor column neurons in snakes, which innervate limb muscles controlling limb movements; absence of motor neurons that innervate trunk muscles in tortoises; presence of innervation from the trigeminal nerve to pit organs responsible to infrared ...