Search results
Results from the WOW.Com Content Network
A projective basis is + points in general position, in a projective space of dimension n. A convex basis of a polytope is the set of the vertices of its convex hull. A cone basis [5] consists of one point by edge of a polygonal cone. See also a Hilbert basis (linear programming).
Each basis determines a unique BFS: for each basis B of m indices, there is at most one BFS with basis B. This is because x B {\displaystyle \mathbf {x_{B}} } must satisfy the constraint A B x B = b {\displaystyle A_{B}\mathbf {x_{B}} =b} , and by definition of basis the matrix A B {\displaystyle A_{B}} is non-singular, so the constraint has a ...
The fact that the change-of-basis formula expresses the old coordinates in terms of the new one may seem unnatural, but appears as useful, as no matrix inversion is needed here. As the change-of-basis formula involves only linear functions, many function properties are kept by a change of basis. This allows defining these properties as ...
FGLM algorithm is such a basis conversion algorithm that works only in the zero-dimensional case (where the polynomials have a finite number of complex common zeros) and has a polynomial complexity in the number of common zeros. A basis conversion algorithm that works is the general case is the Gröbner walk algorithm. [4]
An orthonormal basis can be derived from an orthogonal basis via normalization. The choice of an origin and an orthonormal basis forms a coordinate frame known as an orthonormal frame. For a general inner product space , an orthonormal basis can be used to define normalized orthogonal coordinates on .
In mathematics, the Zassenhaus algorithm [1] is a method to calculate a basis for the intersection and sum of two subspaces of a vector space. It is named after Hans Zassenhaus , but no publication of this algorithm by him is known. [ 2 ]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The concept of orthogonality may be extended to a vector space over any field of characteristic not 2 equipped with a quadratic form .Starting from the observation that, when the characteristic of the underlying field is not 2, the associated symmetric bilinear form , = ((+) ()) allows vectors and to be defined as being orthogonal with respect to when (+) () = .